A Integração de Séries Temporais e Dados de Textos para a Previsão de Preços Futuros de Milho e Soja

Authors

  • Ivan José Reis Filho Universidade do Estado de Minas Gerais https://orcid.org/0000-0003-1968-6279
  • Sergio Carlos Portari Junior Universidade do Estado de Minas Gerais
  • Cicero Marcelo de Oliveira
  • Leonardo Vieira Barcelos Universidade do Estado de Minas Gerais
  • Geraldo Nunes Corrêa Universidade do Estado de Minas Gerais

Keywords:

Ciência de Dados, Inteligência Artificial, Commodities

Abstract

Agricultural commodities' prices perform an important role in the global market. Hence to the non-linear and non-stationary temporal series data nature, the price prediction has become a challenge. Many existing forecasting models do not take market sentiment, political events, and economic crises into account. To overcome the limitations described and motivated by the fact that agribusiness related news may have useful forecast information, text mining techniques were applied to add extracted text data and incorporate these data into two agricultural commodities temporal series. Machine learning algorithms with different arrangements were used in soybean and corn price forecasting. Four statistics evaluation techniques were applied to verify the proposed approach effectiveness. Results presented that the implemented model enhances future price forecasts. Thus, data text information offers an alternative for better and enhanced accuracy for price prediction.

Published

2021-10-13

How to Cite

Reis Filho, I. J., Portari Junior, S. C., Oliveira, C. M. de ., Barcelos, L. V., & Nunes Corrêa, G. (2021). A Integração de Séries Temporais e Dados de Textos para a Previsão de Preços Futuros de Milho e Soja. Revista De Sistemas De Informação, 1(01). Retrieved from https://revistaresi.com.br/index.php/resi/article/view/18

Issue

Section

Artigos

Most read articles by the same author(s)